Electrospinning Pullulan Fibers from Salt Solutions

نویسندگان

  • Ran Li
  • Peggy Tomasula
  • Ana Margarida Moreira de Sousa
  • Shih-Chuan Liu
  • Michael Tunick
  • Kevin Liu
  • Linshu Liu
  • Mohamed Khayet
چکیده

There is an increasing interest in applying the technology of electrospinning for making ultrafine fibers from biopolymers for food-grade applications, and using pullulan (PUL) as a carrier to improve the electrospinnability of proteins and other naturally occurring polyelectrolytes. In this study, PUL solutions containing NaCl or Na3C6H5O7 at different concentrations were electrospun. The inclusion of salts interrupted the hydrogen bonding and altered solution properties, such as viscosity, electric conductivity, and surface tension, as well as physical properties of fibers thus obtained, such as appearance, size, and melting point. The exogenous Na+ associated to the oxygen in the C6 position of PUL as suggested by FTIR measurement and was maintained during electrospinning. Bead-free PUL fibers could be electrospun from PUL solution (8%, w/v) in the presence of a 0.20 M NaCl (124 ± 34 nm) or 0.05 M Na3C6H5O7 (154 ± 36 nm). The further increase of NaCl or Na3C6H5O7 resulted in fibers that were flat with larger diameter sizes and defects. SEM also showed excess salt adhering on the surfaces of PUL fibers. Since most food processing is not carried out in pure water, information obtained through the present research is useful for the development of electrospinning biopolymers for food-grade applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chitosan/nanosilver Nanofiber Composites with Enhanced Morphology and Microbiological Properties

In recent years natural polymers have been widely used in biomedical applications. Application of natural and biocompatible polymers in wound dressing, medical sutures and tissue engineering are extensively growing. Additional properties are provided when metal nanoparticles such as silver and gold are incorporated in to the fibers. However, nowadays nanofibers due to their inherent properties ...

متن کامل

Formation of Poly(vinylidene fluoride) Nanofibers Part II: the elaboration of incompatibility in the electrospinning of its solutions

Poly(vinylidene fluoride) (PVDF) fibers with two molecular weights were prepared via electrospinning process. In this process, the concentration of spinning depended drastically on the gelation process. Also, it was experimentally smaller than obtained concentration in the solution entanglement number approach (SENA). Proof of this incompatibility was explained by the properties of PVDF a...

متن کامل

Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity

By means of the electrospinning technique, micronand nanofibers can be obtained from polymer solutions under a very high electrical field. A special challenge is to produce bead-free uniform fibers since any minor changes in the electrospinning parameters such as slight variations in the polymer solutions and/or electrospinning experimental parameters may result in significant variations in the...

متن کامل

Bright Light Emission and Waveguiding in Conjugated Polymer Nanofibers Electrospun from Organic Salt Added Solutions

Light-emitting electrospun nanofibers of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-( N,N '-diphenyl)- N,N '-di(p-butyl-oxy-phenyl)-1,4-diaminobenzene)] (PFO-PBAB) are produced by electrospinning under different experimental conditions. In particular, uniform fibers with average diameter of 180 nm are obtained by adding an organic salt to the electrospinning solution. The spectroscopic investigati...

متن کامل

Fabrication, Characterization and Process Parameters Optimization of Electrospun 58S Bioactive Glass Submicron Fibers

Over the past decades, bioactive glass (BG) has been of a great interest in the bone regeneration field, due to its excellent biocompatibility, bioactivity and osteoconductivity. Herein, fabrication of bioactive glass as one-dimensional fibers by employing an Electrospinning process is reported. The Sol-Gel method was chosen considering the final fibers smoothness and homogeneity. Starting sol ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017